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Accelerated  degradation  testing  is  commonly  used  as the  basis  to characterize  battery  cell  performance
over  a  range  of  stress  conditions  (e.g.,  temperatures).  Performance  is  measured  by  some  response  that
is assumed  to  be  related  to  the  state  of  health  of  the  cell  (e.g.,  discharge  resistance).  Often,  the  ultimate
goal  of  such  testing  is to  predict  cell  life  at some  reference  stress  condition,  where  cell  life  is defined  to
be the  point  in  time  where  performance  has  degraded  to  some  critical  level.  These  predictions  are  based
on  a degradation  model  that  expresses  the  expected  performance  level  versus  the  time  and  conditions
under  which  a  cell  has  been  aged.  Usually,  the  degradation  model  relates  the  accumulated  degradation
ife prediction
on-isothermal stress

to the  time  at  a  constant  stress  level.  The  purpose  of  this  article  is  to present  an  alternative  framework
for  constructing  a  degradation  model  that  focuses  on the  degradation  rate  rather  than  the  accumulated
degradation.  One  benefit  of  this  alternative  approach  is  that  prediction  of  cell  life  is greatly  facilitated
in  situations  where  the  temperature  exposure  is  not  isothermal.  This  alternative  modeling  framework  is
illustrated via  a family  of  rate-based  models  and  experimental  data  acquired  during  calendar-life  testing

n  cell
of high-power  lithium-io

. Introduction

High-power lithium-ion batteries are being implemented in
arious transportation applications where there are stringent
eight, energy, power, and cost requirements. A significant bar-

ier that limits wide-spread commercialization of this technology
s the requirement of long battery life, up to 15 years. The U.S.
epartment of Energy Office of Vehicle Technologies has sponsored

 variety of projects to find solutions to these and other barriers
hat limit the commercialization of high-power lithium-ion battery
echnology. One related area of activity involves the development
f methods to accurately predict the life of lithium-ion batteries
n hybrid-electric vehicle (HEV) and plug-in hybrid vehicle (PHEV)
nvironments with a high level of precision given short-term accel-
rated degradation testing.

Accelerated degradation testing with associated modeling and
ata analysis can effectively be used to predict failure-time dis-
ributions [1].  Information from such tests, usually obtained at
elatively high levels of the accelerating factors (e.g., temper-

ture), can be used to predict the long-term performance at
ormal use conditions. Typically, accelerated degradation testing

nvolves exposing cells, in a collective sense, to a variety of thermal

∗ Corresponding author. Tel.: +1 505 844 6247; fax: +1 505 844 9037.
E-mail address: evthoma@sandia.gov (E.V. Thomas).

378-7753/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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s.
© 2012 Elsevier B.V. All rights reserved.

environments. However, individual cells are usually exposed to a
single temperature. During the time of exposure, the state of health
of each cell is measured periodically [2].  The measured performance
at any given time for an individual cell is a combination of effects
that can be related to the technology, to the unique behavior of the
individual cell, and to the measurement process. Here, we focus
on an approach for modeling the average cell performance that is
indicative of a particular technology. The complete set of degra-
dation data acquired across all cells over time is used to construct
a degradation model (e.g., see [3,4]) that expresses the expected
performance level versus the time and temperature under which
a cell has been aged. Usually these models are cast in terms of
cumulative degradation at constant stress conditions. Since cells
are often deployed in applications where constant-stress condi-
tions do not exist, there is motivation for the development and use
of rate-based degradation models. By construction, such models
can predict cumulative degradation under dynamic-stress condi-
tions. Thus, the intent of this article is to present an alternative
framework for modeling degradation that focuses on the degrada-
tion rate rather than the accumulated degradation.

The remainder of the paper is organized as follows. Section
2 discusses cumulative degradation models. Section 3 introduces

rate-based degradation models and associated notation. Methods
for estimating model parameters and predicting the cumulative
degradation over any specified temperature profile are discussed.
Section 4 illustrates the use of rate-based models with existing

dx.doi.org/10.1016/j.jpowsour.2012.01.106
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:evthoma@sandia.gov
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xperimental data (obtained under constant stress) and presents
 new model form that may  be of general interest. An additional
ttribute of the rate-based framework (not applicable in the case
f the illustrative example) is that degradation data acquired from
ells under variable stress can be used for both estimating model
arameters and model validation. Section 5 briefly discusses our
urrent thoughts on how we might design future experiments to
ake advantage of the rate-based framework to use degradation
ata acquired from cells under variable stress.

. Cumulative degradation models

The battery literature contains a number of model forms that
xpress the cumulative degradation of the response of interest (that
easures state of health) as a function of time and the stressing fac-

ors(s). A wide variety of model forms have been proposed (e.g., see
3]). These forms can be mechanistic, empirical, or mixed. Aging
emperature is a common stress factor. Discharge impedance is
ommonly used to measure state-of-health and, therefore, can be
sed to measure degradation [2].  In such cases, the expected cumu-

ative degradation of a cell (measured by increasing impedance)
s often represented by a model of the form �(T ; t) = a + k(T) · f(t),

here �(T ; t) represents the expected value of cell impedance after
xposure to temperature T for time t. In general, we assume that
(T ; t) is an increasing function of both t and T. In some cases,
e use the convention that �(T ; t = 0) = 1. This convention would
ertain to the case where the response variable is expressed as a
alue that is relative to the observed response at t = 0. For example,
homas et al. [4] considered a model of the form,

(T; t) = 1 + exp
{

ˇ0 + ˇ1 · 1
T

}
· t1/2.

Note that cumulative degradation models are generally formu-
ated in terms of exposure to a constant stress level. Thus, such

odels are often only used to predict degradation at, for exam-
le, isothermal conditions. This is significant, since cells are often
eployed in applications where isothermal conditions do not exist.
hile the instantaneous degradation rate can be derived by dif-

erentiating the cumulative degradation models, it may be difficult
o concisely express the rate in terms independent of t. In such
ases, it may  be difficult to predict the level of degradation in cases
here the stress level (temperature) is not constant. Thus, there

s motivation to develop rate-based degradation models which,
y construction, can predict the cumulative degradation at non-

sothermal conditions.

. Rate-based degradation models

Often, it can be more natural to conceptualize a degradation
odel in terms of a rate rather than in terms of accumulated

egradation. Chan and Meeker [5] describe a general approach
or evaluating degradation-based reliability that is based on a
egradation-rate model. The integration of the degradation rate
ith respect to time gives the cumulative degradation as a func-

ion of the stressing history. We  also consider models that can be
xpressed in a differential form. As in the case of cumulative degra-
ation models, the form of rate-based models can have a physical,
mpirical, or mixed basis. Here, we restrict rate-based models to
ases where the rate of degradation depends only on the current
tress and the current level of degradation, but not the detailed his-
ory of the degradation process. This is somewhat analogous to the
cumulative exposure” model for accelerated life tests discussed by

elson [6] in which “the model assumes that the remaining life of

pecimens depends only on the current cumulative fraction failed
nd current stress – regardless how the fraction accumulated.”
eng and Tseng [7] extends the cumulative exposure concept to
 Sources 206 (2012) 378– 382 379

accelerated degradation testing in which it is assumed that “the
degradation path has a memoryless property, which means the rate
of degradation depends only on the current stress, and not on the
history of the process.” The general form of the degradation-rate
model described by Chan and Meeker [5] also assumes that the
degradation rate depends only on the current level of stress. Here
we allow the rate of degradation to also depend also on the current
level of degradation. For example, in the case with a temperature as
the sole stress factor, d�/dt = g(�, T(t)). The cumulative degradation
over the temperature profile T[0, t] is therefore given by

�(T[0, t]) =
∫ t

0

g(�(�), T(�); ˛1, ˛2, . . . , ˛p)d�,

where g also involves model parameters (˛1, ˛2, . . .,  ˛p) that
must be estimated. The model parameters are generally estimated
using nonlinear regression with the observed degradation data. The
observed degradation data used to estimate the model parameters
could be acquired as a consequence of non-isothermal stress. The
resulting fitted model can then be applied to predict the degrada-
tion behavior over some user-specified temperature profile that can
be constructed to match any particular application environment.

3.1. Estimating model parameters

The experimental data are typically acquired by repeatedly
measuring a number of cells. To illustrate, consider the following
notation. Let

Yij = the jth measurement of the ith cell (for i = 1:N  and j = 1:ni)
tij = time at which Yij was acquired, and
T[0,tij] = temperature profile experienced by the ith cell through tij.

The collection of data can be compactly expressed by

{Y11; t11, T[0, t11]}, {Y12; t12, T[0, t12]}, . . . , {Y1n1 ; t1n1 , T[0, t1n1 ]}
{Y21; t21, T[0, t21]}, {Y22; t22, T[0, t22]}, . . . , {Y2n2 ; t2n2 , T[0, t2n2 ]}
. . .
{Yi1; ti1, T[0, ti1]}, {Yi2; ti2, T[0,  ti2]}, . . . , {Yini

; tini
, T[0, tini

]}
. . .
{YN1; tN1, T[0, tN1]}, {YN2; tN2, T[0, tN2]}, . . . , {YNnN

; tNnN
, T[0, tNnN

]

The parameter estimation process will likely involve nonlinear
regression. Inherent in the nonlinear regression process is a ker-
nel function (h) that predicts Yij by numerically integrating the
degradation rate-based model over the temperature profile T[0, tij]
conditioned on the current set of model parameter values, i.e.,
Ŷij = h{tij, T[0, tij]; ˛1, ˛2, . . . ˛p}. For example, when using MAT-
LAB (MathWorks, Natick, MA)  we let the kernel function be an
input to the nonlinear regression module, nlinfit.  The nonlinear
regression procedure searches for the set of model parameter val-
ues that optimizes some objective function that is expressed in
terms of the differences between Ŷij and Yij . Within the nonlin-
ear regression procedure, the kernel function is computed many
times for various sets of the model parameter values. Each compu-
tation of Ŷij involves proceeding through the temperature profile
at an appropriate time step, �t,  using the recursive relationship
Ŷ(k) = Ŷ(k − 1) + g(Ŷ(k − 1),  T(k)) · �t  that is illustrated in Table 1.

Estimates of the model parameters ( ˆ̨ 1, ˆ̨ 2, . . . , ˆ̨ p) are obtained
at the end of the iterative nonlinear regression process resulting in
a fitted rate-based model denoted by
d�

dt
= g(�(t), T(t); ˆ̨ 1, ˆ̨ 2, . . . , ˆ̨ p).

Note that the cost of computing the kernel function for rate-
based models with non-isothermal profiles can be expensive when
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Table 1
Construction of Ŷij .

ı = t/�t T(ı) Ŷ(ı) dŶ(ı)
dt

0 T(0) Ŷ(0) g(Ŷ(0), T(0))

1  T(1) Ŷ(0) + dŶ(0)
dt

· �t g(Ŷ(1), T(1))

2  T(2) Ŷ(1) + dŶ(1)
dt

· �t  g(Ŷ(2), T(2))
·  · · ·
·  · · ·
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m  = tij/�t  T(m) Ŷ(m − 1) + dŶ(m−1)

dt
· �t  g(Ŷ(m), T(m))

ompared to computing the analogous kernel function for cumula-
ive rate-based models with isothermal profiles (where Ŷij can be
omputed directly).

.2. Predicting the degradation behavior over an
pplication-specific temperature profile

Given the fitted rate-based model, one can predict the cumula-
ive degradation over an application-specific temperature profile
ASP), T[0, t]ASP, using a numerical approximation to evaluate
ˆ (T[0, t]ASP) =

∫ t

0
g(Ŷ(T[0, �]ASP), T(�); ˆ̨ 1, ˆ̨ 2, . . . , ˆ̨ p)d� (e.g., see

able 1).

. Illustrative example

Here we illustrate the use of rate-based models by using exper-
mental data discussed in [4].

As described in [4],  the experimental data were acquired from
igh-power SAFT VL7P lithium-ion cylindrical cells. The purpose
f the experiment was to estimate the mean lifetime of this cell
echnology via their observed degradation in performance. Briefly,
ine cells were exposed to each of the following three tempera-
ures: 40 ◦C, 47.5 ◦C, and 55 ◦C. Three additional cells were exposed
o 30 ◦C. Prior to initiating the experiment and at an interval of
very 31.5 days following initiation, the cells were subjected to

 reference performance test (RPT) at 30 ◦C to assess performance
egradation. As part of each RPT, the discharge resistance was  mea-
ured at a state-of-charge of 62% SOC. The test continued for about
21 days resulting in eight RPT’s (including the initial RPT).

Thomas et al. [4] represented the experimental data with the
umulative degradation model,

(T; t) = 1 + exp
{

ˇ0 + ˇ1 · 1
T

}
· t1/2,

here �(T ; t) represents the expected relative resistance (resis-
ance at time t divided by the initial resistance). The model matched
he experimental data reasonably well. However, based on a boot-
trap procedure [4],  there was some indication of lack-of-fit. Based
n this cumulative degradation model, the expected relative resis-
ance ( �̂) is the solution to the equation, (1/2) �̂2 − �̂ + (1/2) =
1/2)

∫ t

0
exp{2 · ( ˆ̌ 0 + ˆ̌ 1 · (1/T(�)))}d�.  For this particular model

orm, we are able to obtain a relatively simple expression for cumu-
ative degradation over a non-constant stress profile. However,
ther model forms may  not be amenable to such a compact expres-
ion.

We have found an alternative model form that provides a
loser fit to the experimental data. This rate-based model is of the
orm d�/dt = k(T) · �−� with the initial condition �(T ; 0) = 1, where
(T) = exp {ˇ0 + (ˇ1/T)}/(� + 1) and � > 0.

The general form of the model, d�/dt = k(T) · �−� , was  motivated

y observing a decreasing rate of degradation with time where at a
articular degradation state (�), the rate depends on temperature.
he Arrhenius form of the effect of temperature was  assumed. This
odel form is designed to provide a flexible family of rate models
Fig. 1. Fitted degradation model with 95% confidence intervals and data.

that depend on the current state and exposure temperature such
that the rate of resistance growth decreases with increasing resis-
tance. This model, which might have application elsewhere, could
apply to a linear decay rate where a reaction was independent of
the thickness of a film, or a square root of time dependence that
mimics resistance of a film growing via diffusion limitations, or
something else. The Arrhenius term, k(T), also gives this model form
some physical/chemical basis.

Estimates of the model parameters could be obtained using the
method described in Section 3.1.

However, since the individual cells were exposed to isother-
mal  conditions, one can use a simpler approach in this
case. First, integrate the rate-based model assuming that T is
constant. This yields the cumulative degradation model �(T,
t) = [exp {ˇ0 + (ˇ1/T)} · t + 1]1/(�+1). The model parameters can be
estimated by using nonlinear regression with the data

{Yij; tij, Ti}, i = 1 : N, j = 1 : Ni.

Following [3],  robust nonlinear regression was used with the
40 ◦C, 47.5 ◦C, and 55 ◦C data in order to estimate the model param-
eters. The estimated model parameters (with standard errors) are:

ˆ̌ 0 = 40.73 (2.2)
ˆ̌ 1 = −12, 194 (680), and
�̂ = 11.03 (0.48).

Confidence intervals for the model parameters can be obtained
by adding and subtracting multiples of the standard errors to the
respective parameter estimates. An approximate 95% confidence
interval for a given parameter is the estimate plus or minus twice
the respective standard error. For example, an approximate 95%
confidence interval for ˇ0 is [36.3, 45.1]. The fitted degradation
model (with data) is illustrated in Fig. 1. Confidence intervals (at
the 95% level) representing the uncertainty in the average perfor-
mance (across the cell population) over time and temperature are
also provided. One can compare this model with the model that
was  presented in [4].  As seen in Fig. 1, the current model gener-
ally seems to pass closer to the middle of the observations in each
time/temperature group than the model presented in [4] (compare
with Fig. 2 in [4]). While the rate-based model seems to under-

predict the resistance increase at 30 ◦C, the apparent discrepancy is
well within what might be expected given a relative measurement
error of about 1% (see below).
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Fig. 2. Hourly temperature profile: Phoenix, AZ, Calendar year 2010.

Differences between the observed data and model predictions
ere assessed in the context of the error model described in

4]. Briefly, the error model is of the form Var(Yi(X; t)) ≈ �2
ı

·
�(X; t) − 1)2 + 2 · �2

ε , where �2
ε is the measurement error and �2

ı
s a random cell-specific effect. The estimates of the error model
arameters are �̂2

ı
= 3.6 × 10−3 and �̂2

ε = 1.2 × 10−4, respectively.
hus, the cell-specific proportional effect is estimated to have a
tandard deviation of about 0.06 and the measurement error is esti-
ated to have a relative standard deviation of about 0.01. When the

sing the bootstrap procedure [3] (which incorporates the error
odel), there was no indication of lack of fit.
For this illustrative example, the assumption of “lack of mem-

ry” in the degradation process cannot be evaluated due to the fact
hat cells were exposed only to isothermal stress. Nevertheless,
sing the “lack of memory” assumption, it is interesting to apply
he fitted rate model to predict the degradation for a hypotheti-
al temperature profile. To illustrate, consider the hourly ambient
emperature profile of Phoenix, AZ during 2010 that is exhibited
n Fig. 2 [8].  Using the method discussed in Section 3.2 and based
n the fitted degradation model, if we expose cells to this annual

rofile five consecutive times we predict the degradation profile

llustrated in Fig. 3. The predicted degradation profile based on
he cumulative degradation model from [4] is also displayed for
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ig. 3. Predicted degradation profiles for rate-based and cumulative degradation
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purposes of comparison. Note that the plateaus in the predicted
relative resistance relate to the low-temperature portion of each
annual cycle. While the resistance profiles produced by the two
models are grossly similar, the rate-based model begins with a
gentler increase but reaches higher levels of resistance. The unavail-
ability of variable stress data makes it impossible to rigorously
compare the two models. Note that the predicted lifetime of the
cell would be determined by the predicted time required to reach
a certain level of cumulative degradation.

5. Experimental design and model validation

To date, due to the focus on accumulated degradation models,
most calendar life experiments involve constant stress. Consider-
ation of rate-based models can motivate a number of alternative
experimental designs to assess calendar-life. While one might con-
tinue to expose some cells to isothermal stress, other cells could be
targeted to experience non-isothermal exposure. Due to the nature
of the parameter estimation process described in Section 3.1,  the
data acquired from all cells (independent of the nature of temper-
ature exposure – isothermal versus non-isothermal) could be used
either to estimate the model parameters or to validate a model.
It would be desirable to subject some of the cells to increasing
stress levels and others to decreasing stress levels. The temperature
profiles could be discrete (e.g., step changes) or continuous (e.g.,
sinusoidal). One could also vary the frequency and amplitude of
the temperature variations. We are currently investigating exper-
imental designs containing various combinations of stress profiles
for studying other cell technologies.

One could opt to develop degradation models with data acquired
from cells exposed to isothermal environments and validate the
models with data acquired from cells exposed to non-isothermal
environments. However, true validation of degradation models
requires that cells be tested at stress profiles that are similar to
use conditions.

In cases where the validation data are inconsistent with pre-
dictions from the developed model, one needs to modify the form
and/or assumptions of the model. If the current degradation rate
does depend on the detailed past history of the degradation process,
then the degradation measure does not adequately represent the
state of health. Other performance measures (possibly in combina-
tion) may  be needed to represent the state of health. For example,
the growth of a solid electrolyte interphase (SEI) layer may be
accompanied by an increase in resistance. Suppose the resistance
of the existing SEI layer is a function of the circumstances under
which it was  formed, and, in turn, affects the nature of the layer and
kinetics of further layer growth. In such a case, the current degra-
dation rate would likely depend on the detailed prior history of the
degradation process. Full characterization of the state of health of
the cell might require higher-dimensional data (e.g., electrochemi-
cal impedance spectroscopy [9,10]).  In such a case, the degradation
model would be more complex and likely involve a set of equations
of the form:{

d�1

dt
= g1(�1, �2, . . . , �q; T(t)), . . . ,

d�q

dt
= gq(�1, �2, . . . , �q; T(t))

}
.

where q is the dimension of the state-of-health measure. We  plan to
incorporate such measurements in our future degradation studies.
6. Conclusion

This paper provides methodology for constructing rate-based
degradation models. By construction, such models can provide
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redictions of degradation accumulated over variable stress con-
itions. Thus, this methodology can be beneficial when the stress
onditions in the application of interest are variable such as in the
ase of lithium-ion technology used in transportation applications.

hile the methodology was illustrated with lithium-ion cells under
hermal stress, it can be applied more generally to situations involv-
ng other technologies with other degradation measures and stress
actors.
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